M1.(a) (nucleophilic) addition-elimination
Not electrophilic addition-elimination

Allow $\mathrm{C}_{6} \mathrm{H}_{5}$ or benzene ring
Allow attack by : $\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
M2 not allowed independent of M1, but allow M1 for correct attack on C+

M3 for correct structure with charges but lone pair on O is part of M4
M4 (for three arrows and lone pair) can be shown in more than one structure
(b) The minimum quantity of hot water was used:

To ensure the hot solution would be saturated / crystals would form on cooling

The flask was left to cool before crystals were filtered off:
Yield lower if warm / solubility higher if warm

The crystals were compressed in the funnel:
Air passes through the sample not just round it
Allow better drying but not water squeezed out

A little cold water was poured through the crystals:

To wash away soluble impurities
(c) Water

Do not allow unreacted reagents

Press the sample of crystals between filter papers
Allow give the sample time to dry in air
(d) $\quad M_{r}$ product $=135.0$

Expected mass $=5.05 \times \frac{135.0}{93.0}=7.33 \mathrm{~g}$

Percentage yield $=\frac{4.82}{7.33} \times 100=65.75=65.8(\%)$

Answer must be given to this precision
(e)

OR

(f) Electrophilic substitution
(g) Hydrolysis
(h) $\mathrm{Sn} / \mathrm{HCl}$

Ignore acid concentration; allow Fe / HCl

```
M2.(a) \(\quad(Q=m c \Delta T)\)
\[
=50 \times 4.18 \times 27.3
\]
If incorrect (eg mass \(=0.22\) or 50.22 g\() \quad \mathbf{C E}=0 / 2\)
```

$=5706 \mathrm{~J}$ (accept 5700 and 5710)
Accept 5.7 kJ with correct unit. Ignore sign.
(b) $\quad M_{\mathrm{r}}$ of 2-methylpropan-2-ol $=74(.0)$

For incorrect M_{r}, lose M1 but mark on.

$$
\begin{aligned}
\text { Moles } & =\text { mass } / M_{r} \\
& =0.22 / 74(.0) \\
& =0.00297 \text { moles }
\end{aligned}
$$

$\Delta H=-5706 /(0.002970 \times 1000)$ $=-1921\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

If 0.22 is used in part (a), answer $=-8.45 \mathrm{~kJ} \mathrm{~mol}^{-1}$ scores 3
(Allow-1920, -1919)
If uses the value given (5580 J), answer $=-1879 \mathrm{~kJ} \mathrm{~mol}^{-1}$ scores 3
Answer without working scores M3 only.
Do not penalise precision.
Lack of negative sign loses M3
(d) $\quad(-2422-\operatorname{part}(\mathrm{b})) \times 100 /-2422$

Ignore negative sign.
Expect answers in region of 20.7
If error carried forward, 0.22 allow 99.7
If 5580 J used earlier, then allow 22.4
(e) Reduce the distance between the flame and the beaker / put a sleeve around the flame to protect from drafts / add a lid / use a copper calorimeter rather than a pyrex beaker / use a food calorimeter

Any reference to insulating material around the beaker must be on top.
Accept calibrate the equipment using an alcohol of known enthalpy of combustion.
(f) Incomplete combustion
$\left(\mathrm{Cr}_{2} \mathrm{O}_{7^{2}}{ }^{2+}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{Fe}^{3+}\right) \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}: \mathrm{Fe}^{2+}=1: 6$
If 1:6 ratio incorrect cannot score M2 or M3
moles of $\mathrm{Fe}^{2+}=6 \times 3.195 \times 10^{-4}=1.917 \times 10^{-3}$
Process mark for M1 $\times 6$ (also score M2)

Process mark for M3 $\times 10$
mass of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=1.917 \times 10^{-2} \times 277.9=5.33(\mathrm{~g})$
Mark for answer to M4 $\times 277.9$
(allow 5.30 to 5.40)
Answer must be to at least 3 sig figs
Note that an answer of 0.888 scores M1, M4 and M5 (ratio 1:1 used)
(b) (Impurity is a) reducing agent / reacts with dichromate / impurity is a version of FeSO_{4} with fewer than 7 waters (not fully hydrated)

Allow a reducing agent or compound that that converts Fe^{3+} into Fe^{2+}

Such that for a given mass, the impurity would react with more dichromate than a similar mass of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$

OR for equal masses of the impurity and $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$, the impurity would react with more dichromate.

Must compare mass of impurity with mass of $\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$

M4.(a) This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

All stages are covered and the explanation of each stage is generally correct and virtually complete.

Answer is communicated coherently and shows a logical progression from stage 1 and stage 2 to stage 3 . Steps in stage 3 must be complete, ordered and include a comparison.

Level 3 5-6 marks

All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.

Answer is mainly coherent and shows a progression from stage 1 and stage 2 to stage 3 .

Level 2
3-4 marks
Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete.

Answer includes some isolated statements, but these are not presented in a logical order or show confused reasoning.

Level 1
1-2 marks
Insufficient correct Chemistry to warrant a mark.

Indicative Chemistry content

Stage 1: difference in structure of the two acids

- The acids are of the form RCOOH
- but in ethanoic acid $\mathrm{R}=\mathrm{CH}_{3}$
- whilst in ethanedioic acid $\mathrm{R}=\mathrm{COOH}$

Stage 2: the inductive effect

- The unionised COOH group contains two very electronegative oxygen atoms
- therefore has a negative inductive (electron withdrawing)effect
- \quad The CH_{3} group has a positive inductive (electron pushing) effect

Stage 3: how the polarity of OH affects acid strength

- The $\mathrm{O}-\mathrm{H}$ bond in the ethanedioic acid is more polarised / H becomes more δ^{+}
- More dissociation into H^{+}ions
- Ethanedioic acid is stronger than ethanoic acid
(b) Moles of $\mathrm{NaOH}=$ Moles of $\mathrm{HOOCCOO}^{-}$formed $=6.00 \times 10^{-2}$

Extended response

Moles of HOOCCOOH remaining $=1.00 \times 10^{-1}-6.00 \times 10^{-2}$
$=4.00 \times 10^{-2}$
$K_{\mathrm{a}}=\left[\mathrm{H}^{+}\right][\mathrm{A}-] /[\mathrm{HA}]$
$\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]$

$$
\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times[\mathrm{HA}] /\left[\mathrm{A}^{-}\right]
$$

$\left[\mathrm{H}^{+}\right]=5.89 \times 10^{-2} \times\left(4.00 \times 10^{-2} / \mathrm{V}\right) /\left(6.00 \times 10^{-2} / \mathrm{V}\right)=3.927 \times 10^{-2}$
$\mathrm{pH}=-\log _{10}\left(3.927 \times 10^{-2}\right)=1.406=1.41$
Answer must be given to this precision

(c) $5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+6 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-} \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{OR} 5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-} \longrightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

Moles of $\mathrm{KMnO}_{4}=20.2 \times 2.00 \times 10^{-2} / 1000=4.04 \times 10^{-4}$

Moles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=5 / 2 \times 4.04 \times 10^{-4}=1.01 \times 10^{-3}$

Concentration $=$ moles $/$ volume $\left(\right.$ in dm ${ }^{3}$)
$=1.01 \times 10^{-3} \times 1000 / 25=4.04 \times 10^{-2}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
If 1:1 ratio or incorrect ratio used, M2 and M4 can be scored

M5.(a) Other product in equation is water
If product incorrect, $C E=0 / 2$
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}+3 \mathrm{NaOH} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+3 \mathrm{NH}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
Allow multiples, including fractions.
Ignore state symbols.
(b) Named indicator paper placed in gas / add named indicator to gas / collect gas and add named indicator

If indicator not named, $C E=0 / 2$
Lose this mark if the indicator is added to the reaction mixture. Can still score the second mark.

Correct full colour change
If universal indicator is used, allow 'green to blue / purple' or
'yellow to blue / purple'.
If litmus is used, allow 'purple to blue' or 'red to blue'.
Allow one mark overall for 'add universal indicator' and 'turns purple / blue'.
Allow one mark overall for 'add litmus' and 'turns blue'.

